Acta Cryst. (1972). B28, 1248

The Crystal and Molecular Structure of the trans-syn Photodimer of Methyl Orotate*

BY GEORGE I. BIRNBAUM

Biochemistry Laboratory, National Research Council, Ottawa, Canada

(Received 17 August 1971)

The photodimer of methyl orotate, formed upon ultraviolet irradiation of the monomer in aqueous solution, crystallizes as the dihydrate, $C_{12}H_{12}O_8N_4.2H_2O$. The crystals are monoclinic, space group C2/c (Z=4), with $a = 14.024 \pm 0.002$, $b = 6.722 \pm 0.002$, $c = 17.006 \pm 0.002$ Å, $\beta = 105.11 \pm 0.02^\circ$. Data were collected at room temperature with an automatic four-circle Picker diffractometer. The structure was determined by the symbolic addition method and refined by the least-squares procedure to a final value of R = 0.042. Two almost flat pyrimidine rings are fused to a slightly puckered (dihedral angle 169.5°) cyclobutane ring in the *trans-syn* configuration. The pyrimidine rings are twisted by 7° with respect to one another, and the lengths of the two interpyrimidine bonds are 1.556 (2) and 1.628 (2) Å. The high density of the crystals ($D_x = 1.61$, $D_m = 1.63$ g.cm⁻³) is attributable to an extensive network of hydrogen bonds which includes a bifurcated bond.

Introduction

Photodimerization of pyrimidines is one of the reactions which contributes to mutagenic and lethal effects of ultraviolet irradiation of micro-organisms. Consequently, there has been great interest in the photochemistry of pyrimidines and in the structures of their photodimers. Some of the latter have been determined by X-ray crystallography and they include examples of three of the four possible cyclobutane isomers (Wulff & Fraenkel, 1961). The photochemistry and dimerization of orotic acid (1a) and its methyl ester (1b) have been studied extensively in recent years (Sztumpf & Shugar, 1965; Sztumpf-Kulikowska, Shugar & Boag, 1967; Herbert, Hunt & Johns, 1968; Yip, Riddell & Szabo, 1970), and it was suggested that the transanti dimer was obtained from irradiation of orotic acid in aqueous solution (Lisewski & Wierzchowski, 1970). In order to interpret recent mechanistic studies (Whillans & Johns, 1969; Charlier, Hélène & Dourlent, 1969; Yip et al., 1970), a definite knowledge of the structure of the photoproduct was necessary and this led to the present X-ray analysis. Its results revealed that the structure of methyl orotate photodimer has the *trans-syn* configuration (2b). The photodimer of orotic acid was shown to have the same stereochemistry (2a), since upon methylation with diazomethane it yielded a product identical to that obtained from photodimerization of methyl orotate (Birnbaum, Dunston & Szabo, 1971).

* Issued as N.R.C.C. No. 12419

This being the first crystal-structure analysis of a *trans-syn* pyrimidine cyclobutane dimer, it may be of interest to recall that the corresponding isomer of a thymine dimer was isolated from ultraviolet-irradiated denatured DNA (Ben-Hur & Ben-Ishai, 1968).

Experimental

Crystal data

Methyl orotate photodimer dihydrate,

C₁₂H₁₂O₈N₄.2H₂O; F.W. 376.2; monoclinic:

$a = 14.024 \pm 0.002 \text{ Å}$	$D_x = 1.61 \text{ g.cm}^{-3}$
$b = 6.722 \pm 0.002$	$D_m = 1.63 \text{ g.cm}^{-3}$ (flotation)
$c = 17.006 \pm 0.002$	Z=4
$\beta = 105 \cdot 11 \pm 0.02^{\circ}$	F(000) = 768
$V = 1547.7 \text{ Å}^3$	$\mu = 12.6 \text{ cm}^{-1} (\text{Cu } K\alpha)$

Absent reflexions: h0l when l is odd, hkl when h+k is odd. Possible space groups: Cc or C2/c. Space group C2/c determined from statistics of E's.

The material was obtained by ultraviolet irradiation of aqueous solutions of methyl orotate. The crystals were grown from a mixture of ethanol and water. They were colourless plates with a trapezoid face perpendicular to c*. One of them was cut to a size of $0.2 \times 0.4 \times 0.5$ mm and mounted along the b axis on an automated Picker four-circle diffractometer, equipped with a Cu target tube and a scintillation counter. The cell dimensions were measured at room temperature at a small take-off angle and a narrow slit, using both Cu $K\alpha_1$ ($\lambda = 1.5405$ Å) and Cu $K\alpha_2$ ($\lambda = 1.5443$ Å) radiations. Monochromatization was achieved by a nickel filter and a pulse-height analyser. The movingcrystal, moving-counter method ($\theta/2\theta$ scan) was used to measure the intensity data (2° scans for $2\theta < 100^\circ$, 3° for $2\theta \ge 100^\circ$) and background counts were recorded at the beginning and end of each scan. When the count rate exceeded 20000 cps the current was reduced and, where necessary, brass attenuators were used. Two standard reflexions (602 and 170) were monitored at

intervals of 2 hours. Their average intensity decreased by 12% after 40% of the data had been measured, and the crystal was replaced by another one of similar dimensions and mounted in the same manner. The rest of the data were collected from the second crystal whose average intensity decreased by only 2%. A net count of 100 or 5% of the background, whichever was higher, was accepted as threshold intensity below which reflexions were considered unobserved. Of 1308 reflexions accessible to the diffractometer $(2\theta \le 130^\circ)$, 1234 (94%) had intensities above threshold values. Absorption corrections were not applied. The minimum and maximum absorption correction factors (A^*) would be approximately 1.2 and 1.6, respectively.

Structure determination

A calculation of the statistical distribution of E values indicated a centrosymmetric space group, and the structure was solved by the symbolic-addition method (Karle & Karle, 1966). The first E map revealed the positions of all 13 nonhydrogen atoms, including that of the water oxygen atom.

The atomic scattering factors for C, N, and O were those given by Hanson, Herman, Lea & Skillman (1964) and those for bonded H were taken from Stewart, Davidson & Simpson (1965). The oxygen curve was corrected for anomalous dispersion with $\Delta f' = 0.0$ and $\Delta f'' = 0.1$ (International Tables for X-ray Crystallography, 1962).

After five cycles of least-squares refinement, using the block-diagonal approximation and isotropic temperature parameters, the value of R decreased to $13 \cdot 2\%$. Throughout the refinement, the function $\sum w(|F_o| - |F_c|)^2$ was minimized and a factor of 0.8 was applied to all shifts. After three cycles with anisotropic temperature parameters, a low-angle difference Fourier map revealed the positions of the eight hydrogen atoms on peaks ranging in height from 0.50 to 0.82 e.Å⁻³. These atoms were included in the subsequent refinement. The weighting scheme introduced at this stage was $w = w_1 \cdot w_2$, where

$$w_{1} = 1 \qquad \text{for } |F_{o}| \le 18$$

= 18/|F_{o}| \qquad \text{for } |F_{o}| > 18
$$w_{2} = (\sin^{2} \theta + 0.3)/2 \text{ for } \sin^{2} \theta \le 0.33$$

= 1 \qquad \text{for } \sin^{2} \theta > 0.33.

This weighting scheme was fairly successful in eliminating the dependence of $w\Delta F^2$ on $|F_o|$ and $\sin^2 \theta$. It was noted that the two strongest reflexions (002, $|F_c| =$ 189.7 and 402, $|F_c| = 310.3$) were affected by extinction, while for two others (244 and 244) $|F_o| \simeq 2.5 |F_c|$, possibly due to double reflexions. These four reflexions were excluded from the subsequent refinement.

The refinement converged after the 13th cycle, with the average coordinate shift equalling 0.1σ and the largest one 0.5 σ . The agreement index $R = (\sum |\Delta F|)/|$ $\Sigma[F_{\rm e}]$) for 1230 observed reflexions was 0.042, and the weighted index $R' = (\sum w \Delta F^2 / \sum w F_o^2)^{1/2}$ was 0.050. A final difference Fourier map showed four minima $(-0.30 \text{ to } -0.35 \text{ e.}\text{Å}^{-3})$ in the plane of the pyrimidine ring: three of them at the periphery and the fourth in the centre of the ring. Such minima, which are due to bonding effects, have been observed in the past and were recently discussed by Verschoor & Keulen (1971). There was also a positive peak of $0.24 \text{ e.}\text{Å}^{-3}$, which can be ascribed to a disordered hydrogen atom (see below). The final coordinates and temperature parameters for non-hydrogen atoms are listed in Table 1 and those for hydrogen atoms are given in Table 2. The esti-

 Table 2. Final parameters (and their e.s.d.'s) of the hydrogen atoms

All values are	$\times 10^3$. H(W2 [*]) refers to the minor position of	of
	the disordered atom	

	<i>x</i> / <i>a</i>	y/b	z/c	U_{iso}
H (11)	121 (2)	581 (4)	232 (2)	37 (6) Ų
H(31)	189 (2)	95 (4)	138 (2)	40 (6)
H(51)	84 (2)	48 (3)	315 (1)	23 (4)
H(81)	145 (3)	607 (5)	486 (2)	65 (9)
H(82)	42 (3)	707 (7)	454 (3)	85 (11)
H(83)	135 (3)	814 (7)	444 (3)	80 (11)
H(W1)	196 (3)	755 (7)	95 (3)	81 (11)
H(W2)	176 (5)	799 (11)	21 (4)	143 (21)
$H(W^{2*})$	227	783	29	• •

Table 1. Final parameters (and their e.s.d.'s) of the nonhydrogen atoms

All values are $\times 10^4$. The U^{ij} values are in Å² and are defined by exp $\left[-2\pi^2(U^{11}h^2a^{*2}+U^{22}k^2b^{*2}+U^{33}l^2c^{*2}+2U^{23}klb^*c^*+2U^{13}hla^*c^*+2U^{12}hka^*b^*)\right]$.

	x/a	y/b	z/c	U^{11}	U^{22}	U^{33}	$2U^{23}$	$2U^{13}$	$2U^{12}$
N(1)	1233 (1)	4415 (2)	2331 (1)	289 (7)	191 (6)	331 (7)	-8(10)	257 (11)	-24(10)
C(2)	1696 (Ì)	3566 (2)	1813 (1)	242 (7)	232 (7)	290 (8)	52 (12)	167 (11)	12 (12)
O(2)	2 179 (1)	4516 (2)	1441 (1)	424 (7)	320 (6)	437 (7)	68 (11)	497 (11)	-43(10)
N(3)	1625 (l)	1510 (2)	1727 (1)	348 (7)	238 (7)	380 (7)	-11(12)	381 (11)	97 (11)
C(4)	1089 (1)	257 (2)	2069 (1)	298 (7)	201 (7)	388 (8)	31 (13)	230 (14)	111 (12)
O(4)	1035 (1)		1912 (1)	606 (8)	174 (6)	684 (10)	- 79 (11)	704 (15)	44 (11)
C(5)	573 (1)	1128 (2)	2660 (1)	281 (8)	169 (7)	314 (8)	78 (12)	216 (12)	28 (12)
CÌG	588 (1)	3420 (2)	2727 (1)	238 (8)	177 (7)	270 (7)	19 (11)	170 (12)	-2(11)
C(7)	709 (1)	4129 (2)	3598 (1)	237(7)	280 (8)	287 (8)	10(12)	140 (11)	-22(12)
Ō(7)	518 (1)	3102 (2)	4112 (1)	496 (7)	472 (7)	299 (6)	35 (11)	280 (10)	-232(12)
O(8)	974 (1)	6016 (2)	3679 (1)	516 (7)	279 (6)	302 (6)	-117(10)	207 (10)	-77(11)
C(8)	1045 (1)	6909 (4)	4468 (1)	784 (16)	471 (12)	337 (9)	-276(19)	226 (19)	-45(22)
O(W)	2108 (1)	8493 (3)	634 (1)	702 (10)	549 (9)	632 (10)	-80(16)	753(17)	-127(16)

mated standard deviations (shown in parentheses and referring always to the last digits) were derived from the inverse of the least-squares matrix. Observed and calculated structure factors are shown in Table 3.

The structure was subjected to a rigid-body analysis in terms of translation (**T**), libration (**L**), and screw motion (**S**) tensors (Schomaker & Trueblood, 1968), both with and without the $-CO_2CH_3$ groups in the assumed rigid body. The centre of the cyclobutane ring was taken as the centre of gravity. In each case, the value of $\sigma(U_{calc}) = [\sum (\Delta U^{ij})^2/(n-s)]^{1/2}$ was several times higher than the average value of $\sigma(U_{obs}^{ij})$, indicating that the assumption of a rigid body was not justified. The 12 hydrogen bonds connecting each dimer molecule to other molecules (see below) may preclude rigid-body vibration. Consequently, no corrections were applied to bond lengths and angles.

Discussion of the structure

The structure revealed by this X-ray analysis is that of a *trans-syn* cyclobutane dimer (Fig. 1). The asymmetric unit consists of one-half of the molecule, the two halves being related by an axis of twofold rotation

Table 3. Observed and calculated structure factors ($\times 10$)

An asterisk indicates an unobserved reflexion to which the estimated threshold value was assigned.

$ \begin{array}{c} \mathbf{x} \\ \mathbf$
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 1 \\ 0 \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} 0 \\ 0 \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} 1 \\ 0 \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} 1 \\ 0 \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} 1 \\ 0 \end{array} \end{array} \\ \begin{array}{c} 1 \\ 0 \end{array} \end{array} \\ \begin{array}{c} 1 \\ 0 \end{array} \\ \begin{array}{c} 1 \\ 0 \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} 1 \\ 0 \end{array} \\ \begin{array}{c} 1 \\ 0 \end{array} \end{array} \\ \begin{array}{c} 1 \\ 0 \end{array} \end{array} \\ \begin{array}{c} 1 \\ 0 \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ 0 \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\$
$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$
$ \begin{array}{c} \mathbf{r} & 0 & \mathbf{r} & 1 & \mathbf{r} & \mathbf{r} & 1 & \mathbf{r} & 1 & 0 & \mathbf{r} & 0 & 1 & 1 & 0 & \mathbf{r} & 0 & 1 & 1 & 0 & \mathbf{r} & 0 & 1 & 1 & \mathbf{r} & \mathbf{r} & 0 & 1 & 1 & 1 & \mathbf{r} & \mathbf{r} & 0 & 1 & 1 & \mathbf{r} & \mathbf{r} & 0 & 1 & 1 & \mathbf{r} & \mathbf{r} & 0 & 1 & 1 & \mathbf{r} & \mathbf{r} & 0 & 1 & \mathbf{r} & \mathbf$
$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
$ \begin{array}{c} 2 \ 200 \ 215 \ \ 9 \ 100^{-100} \ 100 \ 100^{-100} \ 100^{-10$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c} \mathbf{w} \mathbf{c}_{1} \mathbf{r}_{2} \mathbf{k} \mathbf{s}_{1} \mathbf{r}_{2} \mathbf{s}_{2} \mathbf{s}_{1} \mathbf{r}_{2} \mathbf{s}_{2} \mathbf{s}_{1} \mathbf{r}_{2} \mathbf{s}_{2} \mathbf{s}_{1} \mathbf{r}_{2} \mathbf{s}_{2} \mathbf$
$ \begin{array}{c} \mathbf{x} \\ \mathbf$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 1 151 - 175 1 2 2 - 78 4 336 342 5 158 - 15 H4 4, 1 = 9 H8 5, 1 = 7 1 0 3, 1 = 7 3 10 3, 2 = 0 167 167 1 2 26 - 26 3 2 15 19 1 1 10 127 3 25 - 18 5 169 1 1 10 127 3 25 - 18 5 169 1 2 256 41 3 25 + 4 1 3 25 + 4 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 2 + 1 1 1 1
7 120 -146 3 79 -77 0 32 30 1 183 184 6 190 -196 5 172 176 2 97 103 1 310 -323 6 100 -102 1 4 384 384 3 388 1 3 388 4 1 3 388
1 429 772 2 48 -148 -148 3 133 -121 2 207 -208 1 45 -80 6 137 -102 2 181 -133 6 9 9, 46 5 1 217 -10 9 9, 46 6 73 75 5 16 7 1 132 49 50 137 -10 9 141 -133 6 132 49 50 137 137 120 132 49 50 137 137 120 132 49 50 137 137 120 132 49 50 137 137 120 132 49 50 137 137 120 132 49 50 137 137 120 132 49 50 137 137 120 132 49 50 137 137 120 132 49 50 137 137 120 132 49 50 137 137 120 132 49 50 137 137 120 132 49 50 137 137 120 132 49 50 137 137 120 132 49 50 137 137 120 132 49 50 137 137 120 132 49 50 137 137 120 132 49 50 137 137 120 132 49 50 137 137 132 49 50 137 137 132 49 50 137 137 132 49 50 137 137 132 49 50 137 137 132 49 50 137 137 132 49 50 137 137 132 49 50 137 137 137 132 49 50 137 137 137 137 137 137 137 137 137 137
5 0 5 - C 1 (1 - 1 - 0 - 2 - 1 - 1 - 1 - 2 - 1 - 1 - 1 - 1 - 2 - 1 - 0 - 1 - 2 - 2 - 1 - 1 - 2 - 2 - 2 - 2 - 2
1 225 -713 1 125 -713 1 12 2 1 1 1 1 2 1 1 1 1 1 2 2 1 1 1 1
7 186 -185 1 51 42 2 216 74 5 71 -75 0 188 -191 1 90 90 4 150 -149 3 36 45 44 45 1 16 122 - 3 103 107 1 223 225 3 37 -37 4 112 -106 1 43 -53 2 445 -463 3 278 757 6 232 255 5 25 -18 0 247 246 3 76 82 49 10; 1; 4 0 11; 4:-14 1 129 -123 49 15; 4 15 15 15; 4 15 15
5 137 -132 w 1, t (=-1) W 2, t = 16 5 33 -+2, 6 77 68 7 60 7 6 4 7 4 4 9 -40 3 140 11 ⁶ 4 156 -161 1 35 -10 2 48 68 3 199 2(7) 3 199 -203 7 35 27 1 27 25 0 200 -20 6 7 50 7 68 7 6 9 82 5 42 -41 6 -41
1 1027 1040 2 356 2 80 43 133 133 139 6 244 240 2 10 0 756 1 20 757 1 2 10 75 100 1 40 -40 -40 -40 -40 -40 -40 -40 -40 -40
7 47 58 6 55 -49 100 27 (10 17 3 2)0 5 6 19 -23 3 231 234 6 27 4 1 257 275 2 73 -66 1 460 -484 2 276 278 1 49 -101 1 100 -11 1 27 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5 c4 65 2 c455 c47 4 c8 c3 H1 7 1 c5 11 1 107 100 2 c4 -50 1 137 -117 0 105 101 1 105 10 H2 c4 151 -150 H1 107 104 1 107 105 H1 1 107 105 H1 107 105 10 105 105 105 105 105 105 105 105
me 1, te 4 2 12 2 1 0 1 1 0 1 1 <th1< th=""> 1<!--</td--></th1<>

which bisects the two interpyrimidine bonds. As usual the pyrimidine ring is not planar. The alternating signs and low values of the torsional angles (Fig. 2) indicate that its conformation is that of a very flat chair. Five atoms are within 0.023 Å of a mean plane, while C(6)is at a distance of 0.110 Å from it. Thus, the pyrimidine ring is flatter in this structure than in other photodimers which incorporate a puckered cyclobutane ring (Table 4). The small degree of this puckering is a predictable corollary. Another is the small extent of the relative twist between the two pyrimidine rings. This was taken as the average deviation of two torsional angles, C(4)-C(5)-C(5')-C(4') and N(1)-C(6)-C(6')-C(6')N(1'), from the undistorted value of 120°. This conformation is believed to be connected with hydrogen bonding, which is discussed later. One of its consequences is the small torsional angle C(7)-C(6)-C(6')-N(1') (12.8°), indicating that the C(6)–C(7) and C(6')– N(1') bonds are almost eclipsed. The distance between N(1') and C(7) is therefore so short (2.774 Å) that the latter atom is pushed out of the ester plane. The conformation of the ester group can be seen from the Newman projections in Fig. 3.

Most bond lengths and angles (Fig. 2) are in very good agreement with those in other pyrimidine photodimers (Table 4). The somewhat short C(7)-O(7)double bond is undoubtedly due to the thermal vibration of the latter atom. The most remarkable bond is C(6)-C(6'), which may be the longest in this class of compounds. The lengthening is due to the full substitution of these carbon atoms and to the repulsion resulting from the close distances between N(1') and C(7)and between N(1) and C(7'). This weak bond accounts for the ease with which the photodimer splits into monomers by the action of radiation and/or elevated temperature (Birnbaum et al., 1971). On the other hand, the relatively strong C(5)-C(5') bond must be the reason why monomerization does not take place even more readily. The difference of 0.072 Å between the two interpyrimidine bonds in the largest observed so far. A length of 1.66 (3) Å was recently reported for the C(6)-C(6') bond in the *cis-syn* dimer of 1,3-dimethylthymine (Camerman & Camerman, 1970), but the actual value is somewhat doubtful in view of the low accuracy; one would, in fact, expect the bond to be shorter than the C(5)-C(5') bond, reported as 1.60 (3) Å, which is more affected by overcrowding.

Fig.2. Bond lengths, bond angles, and torsional angles. In bond lengths not involving H atoms, all e.s.d.'s are 0.002 Å except in C(8)-O(8) where the e.s.d.=0.003 Å. The e.s.d.'s in corresponding bond angles are in the range 0.11-0.16°. The e.s.d.'s are 10-15 times higher when H atoms are involved.

Fig. 3. Newman projections (a) along the C(7)-C(6) bond and (b) along the C(8)-O(8) bond.

Fig.1. Stereoscopic view of the structure; the ellipsoids enclose 50 % probability.

	Tat	ole 4. Comparià	son of some ge	cometrical feat	ures in pyrimia	line photodime	S,			
Structure	N(1)-C(2)	C(2)-N(3)	N(3)-C(4)	C(4)-C(5)	C(5)-C(6)	C(6)-N(1)	Inter- pyrimidine	Twist*	Pucker†⊿[C(6)]‡
<i>trans-anti</i> Methylthymine ^a	1.346 (3)	1-395 (3)	1.370 (3)	1.507 (3)	1.543 (3)	1-451 (3)	1-567 (3)	None	None	
<i>trans-anti</i> Thymine ^b	1.334 (3)	1.390 (3)	1-357 (3)	1-508 (3)	1.547 (3)	1-440 (3)	1.587 (3)	None	None	
<i>cis-anti</i> Dimethylthymine ^e	1・342 (3) 1・344 (3)	1-426 (3) 1-406 (3)	1-378 (3) 1-377 (3)	1-509 (3) 1-503 (3)	1-533 (3) 1-529 (3)	1.431 (3) 1.449 (3)	1-571 (3) 1-577 (3)	29°	154°	0-4
<i>cis-syn</i> Dimethylthymine ^a	1·29 (3) 1·32 (3)	1.44 (3) 1.42 (3)	1-41 (3) 1-35 (3)	1-48 (3) 1-52 (3)	1-55 (3) 1-58 (3)	1.42 (3) 1.45 (3)	1-60 (3) 1-66 (3)	26	153	0-32 0-37
cis-syn Uracile	1-336 (3) 1-330 (3)	1.390(3) 1.398(3)	1·360 (3) 1·364 (3)	1-498 (3) 1-497 (3)	1·540 (3) 1·533 (3)	1-441 (3) 1-435 (3)	1-572 (3) 1-563 (3)	24	155	0-26 0-28
cis-anti Uracil ^y	1·320 (8) 1·350 (8)	1-390 (8) 1-420 (8)	1·390 (8) 1·360 (8)	1-500 (8) 1-510 (8)	1-540 (8) 1-560 (8)	1.450 (8) 1.420 (8)	1-590 (8) 1-600 (8)	21	150	0-35 0-38
<i>cis-syn</i> 6-Methyluracil ^g	1-337 (8) 1-327 (8)	1-402 (8) 1-405 (8)	1-364 (8) 1-364 (8)	1.507 (8) 1.501 (8)	1-543 (8) 1-565 (8)	1·459 (8) 1·432 (8)	1-546 (8) 1-586 (8)	16	162	0-28
trans-syn Machail grafaaf	1.349 (2)	1-391 (2)	1-357 (2)	1.502 (2)	1.544 (2)	1-428 (2)	1.556 (2) 1.628 (2)	7	170	0-11
Meinyi orolate			 a. C. H. W b. Camerm c. Camerm c. Camerm d. Camerm d. Camerm e. Adman e e. Adman e f. Konnert h. This wooi 	ei & J. R. Einst an & Nyburg (1 an, Weinblum & an & Camerman & Jasen (1970) & Karle (1971) k	ein, private com 969) c Nyburg (1969) 1 (1970)	munication				
 Relative twist of two pyrin Puckering of the cyclobuta Deviation (in Å) of C(6) fr 	idine rings. ne ring. om the mean pla	ane through the	other five atoms	. The second va	lue for <i>cis-syn</i> d	imethylthymine	refers to C(5').			

1252

THE trans-syn PHOTODIMER OF METHYL OROTATE

There is an extensive network of intermolecular hydrogen bonds in the crystal structure (Fig. 4). Each dimer molecule is connected to two others in adjoining cells along y by pairs of strong N(1) \cdots O(4) bonds. The same molecules are also joined via water molecules, each of which is hydrogen-bonded to two pyrimidine rings separated by b. N(3) donates a hydrogen atom to O(W) which, in turn, donates H(W1) to O(2) and O(4) in different molecules. The presence of the asymmetric bifurcated hydrogen bond is manifested by the coplanarity of H(W1) with O(W) and the two oxygen atoms actingas acceptors. Also, the angles C(2)=O(2) \cdots H(W1) (130°) and C(4)=O(4) \cdots H(W1) (113°) do not deviate

Fig.4. Schematic diagram of the hydrogen bond system. $H(W2^{\times})$ refers to the minor position of the disordered atom. The e.s.d.'s in distances not in volving H atoms are 0.002-0.003 Å. I: x, y, z III: x, $1-y, -\frac{1}{2}+z$ II: x, 1+y, z IV: $\frac{1}{2}-x, \frac{3}{2}-y, \overline{z}$

much from the ideal value of 120°. The geometry, which includes a fairly long $H(W1) \cdots O(4)$ distance (2.42 Å), is very similar to that found in crystals of α-glycine (Albrecht & Corey, 1939; Marsh, 1958). The fact that the dihedral angle between plane A (which is almost parallel to y) and plane E is only 23° (Table 5) indicates the possibility that the hydrogen bond system imposes near-planarity on the pyrimidine rings, enabling each of them to participate in five intermolecular hydrogen bonds. Each water molecule also joins a pair of pyrimidine rings to a third molecule of the photodimer (related to the others by a c glide plane) by donating its second proton to O(7) in the ester group. This bond is quite weak, as indicated by the $O(7) \cdots H(W2)$ and $O(7) \cdots O(W)$ distances. In fact, it is too weak to confine the hydrogen atom to a unique position. The positive peak in the final difference Fourier map appears to be due to a position partially occupied by H(W2). In this minor position, the proton is hydrogenbonded to O(W^{IV}), the oxygen atom (at $\frac{1}{2} - x, \frac{3}{2} - y, \overline{z}$) of another water molecule. Although this hydrogen bond is stronger than the one between H(W2) and O(7). it cannot exist throughout the crystal structure. A full occupancy of the minor position by H(W2) would require two symmetry-related protons to be separated by no more than 1.4 Å, clearly an impossible situation. The disorder of H(W2) is also indicated by the high value of its temperature parameter. On the other hand, the existence of some interaction of H(W2), when in its major position, with O(7) is suggested by the coplanarity of the proton with C(7), O(7), and O(W), and by the fact that all angles, including C= $O \cdots H$ (121°), are normal for a 'linear' hydrogen bond. [Donohue's (1968) argument against the significance of the $C=O\cdots H$ angle in hydrogen bonds is somewhat

Table 5. Least-squares planes and deviations of atoms from them

The e.s.d.'s on Δ are 0.001–0.002 Å for 'heavy' atoms and 0.03–0.05 Å for H atoms.

Plane .	A .	Plane B	Plane C	Plane D	Plane E	Plane F
$\begin{array}{rrrr} N(1) & -(\\ C(2) & +(\\ N(3) & -(\\ C(4) & +(\\ C(5) & -(\\ C(6) & +(\\ O(2)^{\dagger} & +(\\ O(4)^{\dagger} & +(\\ H(11)^{\dagger} & +(\\ H(11)^{\dagger} & +(\\ H(21)^{\dagger} & +(\\ H(21$	2) 0)-036 Å 0)-009 0)-004 0)-024 0)-024 0)-046 0)-052 0)-033 0)-090 0)-10 0)-06	$\begin{array}{c} & \Delta \\ N(1) & 0.000 \text{ Å} \\ C(2) & + 0.011 \\ N(3) & - 0.019 \\ C(4) & + 0.023 \\ C(5) & - 0.009 \\ C(6)^{\dagger} & + 0.110 \\ O(2)^{\dagger} & + 0.019 \\ O(4)^{\dagger} & + 0.071 \end{array}$	$\begin{array}{c} & \Delta \\ C(5) & +0.053 \text{ Å} \\ C(6) & -0.050 \\ C(6') & +0.050 \\ C(5') & -0.053 \end{array}$	$\begin{array}{c} & \Delta \\ C(6) & + 0.006 \text{ Å} \\ C(7) & - 0.024 \\ O(8) & + 0.009 \\ O(9) & + 0.008 \end{array}$	$\begin{array}{ccc} & & & & & & \\ O(2) & & 0 \cdot 000 \text{ Å} \\ O(4) & & 0 \cdot 000 \\ O(W) & & 0 \cdot 000 \\ H(11) & & - 0 \cdot 01 \\ H(W1) & + 0 \cdot 06 \\ N(1)^{\dagger} & + 0 \cdot 210 \\ C(2)^{\dagger} & + 0 \cdot 336 \\ C(4)^{\dagger} & - 0 \cdot 497 \end{array}$	∠ C(7) 0.000 Å O(8) 0.000 O(W) 0.000 H(W2) 0.00
$\chi^2 = 29$	30	$\chi^2 = 415$	$\chi^2 = 4368$	$\chi^2 = 286$	$\chi^2 = 1.9$	$\chi^2 = 0$

Dihedral angles: A-C 62.6°; A-D 36.3°; A-E 23.3°; C-D 97.6°; E-F 93.0°

Plane A 0.6214X - 0.1163Y + 0.7748Z = 3.0159Plane B 0.6382X - 0.1279Y + 0.7592Z = 2.9697Plane C 0.4013X - 0.9159Z = -4.2042Plane D 0.9194X - 0.2959Y + 0.2590Z = 0.1324Plane E 0.6856X + 0.2693Y + 0.6763Z = 4.0748Plane F 0.2621X + 0.8169Y - 0.5138Z = 4.8305

X is along the a axis, Y is in the ab plane, and Z is along the c^* axis.

† Not included in the calculation of the plane.

Fig. 5. Stereoscopic view along y of the contents of a unit cell. The directions of axes are $x \rightarrow$ (from -0.25 to +0.75) and $z_{\cancel{x}}$ (0 to 1.0).

weakened by the fact that the angles which he quoted involved the hydrogen donor rather than the hydrogen atom itself. In view of the deviation of such bonds from linearity, the listed angles could differ from the pertinent ones by 20° . For the same reason one would expect the hydrogen atom rather than its donor to be in or near the carbonyl plane.]

Apart from the hydrogen bonds, the closest intermolecular contacts involve pyrimidine rings related by twofold screw axes. The shortest such distance is $C(4) \cdots O(2)$, 3.059 (2) Å. The crystal structure may be described as consisting of layers perpendicular to x, formed by hydrogen-bonded dimer and water molecules. The fairly short distance between layers along x (approximately 3 Å) may be attributed to the occasional hydrogen bonds in which H(W2) is involved. Fig. 5 shows the contents of a unit cell.

I wish to thank Drs J. M. Dunston and A. G. Szabo for supplying me with the crystals used in this structure analysis. My thanks are also due to Dr M. Przybylska for her continued encouragement and interest in this work. The *MGTLS* program of V. Schomaker and K. N. Trueblood was used in the thermal vibration analysis; Figs. 1 and 5 were drawn with the help of the *ORTEP* program of C. K. Johnson (1965). In all other computations the programs of Ahmed, Hall, Pippy & Huber (1966) were used.

References

- ADMAN, E. & JENSEN, L. H. (1970). Acta Cryst. B26 1326.
- AHMED, F. R., HALL, S. R., PIPPY, M. E. & HUBER, C. P. (1966). NRC Crystallographic Programs for the IBM/360 System. IUCr World List of Crystallographic Computer Programs. 2nd edition. Appendix, p. 52.
- ALBRECHT, G. & COREY, R. B. (1939). J. Amer. Chem. Soc. 61, 1087.
- BEN-HUR, E. & BEN-ISHAI, R. (1968). Biochim. Biophys. Acta, 166, 9.

- BIRNBAUM, G. I., DUNSTON, J. M. & SZABO, A. G. (1971). Tetrahedron Letters, 947.
- CAMERMAN, N. & CAMERMAN, A. (1970). J. Amer. Chem. Soc. 92, 2523.
- CAMERMAN, N. & NYBURG, S. C. (1969). Acta Cryst. B25, 388.
- CAMERMAN, N., WEINBLUM, D. & NYBURG, S. C. (1969). J. Amer. Chem. Soc. 91, 982.
- CHARLIER, M., HÉLÈNE, C. & DOURLENT, M. (1969). J. Chim. Phys. 66, 700.
- DONOHUE, J. (1968). In Structural Chemistry and Molecular Biology. Edited by A. RICH & N. DAVIDSON. San Francisco: Freeman.
- GIBSON, J. W. & KARLE, I. L. (1971). J. Cryst. Mol. Struct. 1, 115.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040.
- HERBERT, M. A., HUNT, J. W. & JOHNS, H. E. (1968). Biochem. Biophys. Res. Commun. 33, 643.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 214. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. A Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849.
- KONNERT, J. & KARLE, I. L. (1971). J. Cryst. Mol. Struct. 1, 107.
- LISEWSKI, R. & WIERZCHOWSKI, K. L. (1970). Photochem. Photobiol. 11, 327.
- MARSH, R. E. (1958). Acta Cryst. 11, 654.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.
- SZTUMPF, E. & SHUGAR, D. (1965). Photochem. Photobiol. 4, 719.
- SZTUMPF-KULIKOWSKA, E., SHUGAR, D. & BOAG, J. W. (1967). Photochem. Photobiol. 6, 41.
- VERSCHOOR, G. C. & KEULEN, E. (1971). Acta Cryst. B27, 134.
- WHILLANS, D. W. & JOHNS, H. E. (1969). *Photochem. Photobiol.* 9, 323.
- WULFF, D. L. & FRAENKEL, G. (1961). Biochem. Biophys. Acta, 51, 332.
- YIP, R. W., RIDDELL, W. D. & SZABO, A. G. (1970). Canad. J. Chem. 48, 987.